

Enhancement in ferroelectricity in V-doped ZnO thin film grown using laser ablation

Tara Dhakal, Devajyoti Mukherjee, Robert Hyde, Hariharan Srikanth, Pritish Mukherjee and Sarath Witanachchi Department of Physics and Center of Integrated Functional Materials, University of South Florida, Tampa, FL 33620

1. Introduction

Wide band gap semiconductor ZnO has Multifunctionality : Piezoelectricity [1], Ferromagnetism [2], Optoelectronics [3], Gas sensor [4], Photocatalysis [5], Sensors and Actuators [6]

Our Goal : Spontaneous Polarization in ZnO

ZnO has hexagonal structure

Zinc or Vanadium

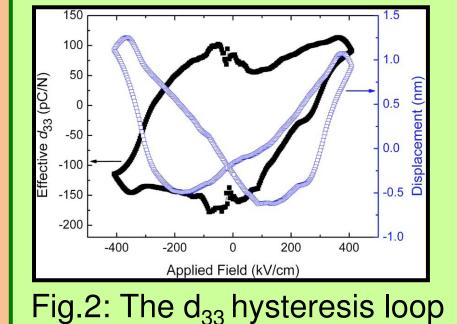
3. Thin Film Growth

<u>Plume profile vs. film quality</u>

Total emission intensity for 100 mT O₂ is the highest indicating higher ionization concentration. As the O_2 pressure increased, the plume is more directed and more particles appeared on the surface as shown below [11]

5. Electric Polarization

□ Standard Sawyer-Tower circuit is used for polarization measurement The charge on the FE capacitor Q=CV Ref Capacitor where C = reference capacitor and FE Capacitor V = voltage across the reference capacitor


- ZnO is non-centrosymmetric
- Zinc has 2⁺ valence state in ZnO
- Replacing Zn²⁺ by smaller cation with different valence state would create charge polarity and strain in the Zn-O bond, which in turn gives Spontaneous Polarization
- Growing ZnO films in oxygen rich ambient makes the material more

insulating which enhances switching Fig.1: Wurtzite ZnO Unit Cell [7]

Recent work

- Yang et al. [8,9] has reported a switchable spontaneous polarization in 2.5 at. % V-doped ZnO
- A butterfly like displacement graph is reported as signature of spontaneous polarization as shown in Fig.2
- The effective d_{33} coefficient of V-doped ZnO is reported to be as high as 110pC/N. This value is an order higher compared to the d_{33} coefficient of bulk ZnO [10] which is 9.9 pC/N

of Zn_{0.975}V_{0.025}O film [8]


 d_{33} in the ferroelectrics can be expressed $d_{33} = 2Q_{eff}\varepsilon_o\varepsilon_r P$

where Q_{eff} is effective electrostriction coefficient, ε_{o} and ε_{r} are free and relative permittivity and P is the polarization

Switchable $d_{33} \implies$ Switchable *P*

Our Plan

• Grow 2 at. % V doped ZnO thin film at higher O₂ pressure

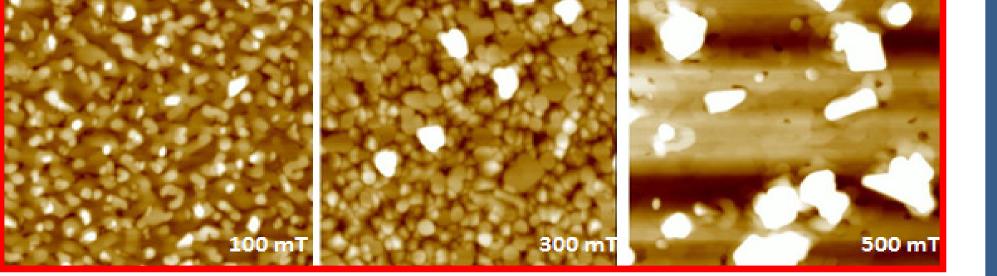
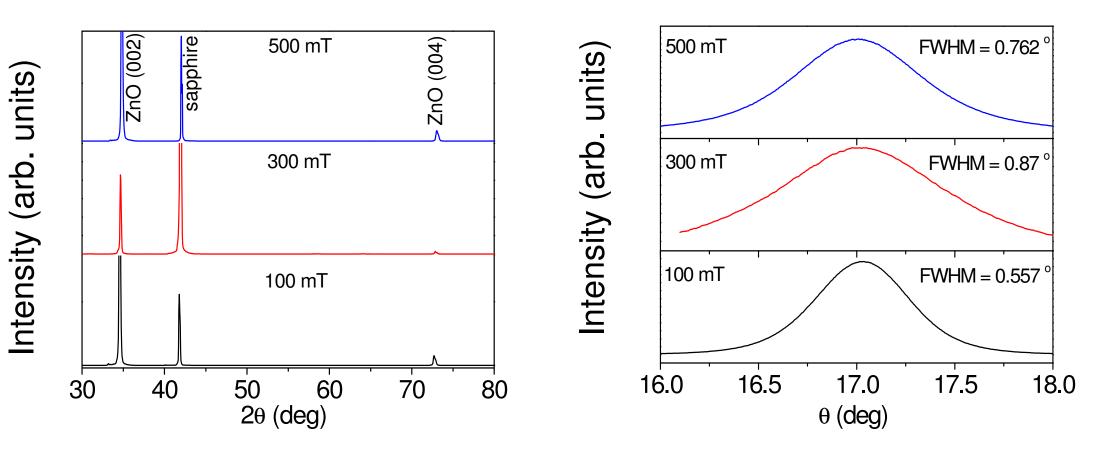



Fig. 5 : Plume images taken by ICCD for various O_2 pressures -100mT, 300mT and 500mT. The lower panel shows the corresponding AFM images (5µm x 5µm) of the films grown on c-cut sapphire (Al₂O₃) substrates heated at 600 $^{\circ}$ C

X-ray Diffraction

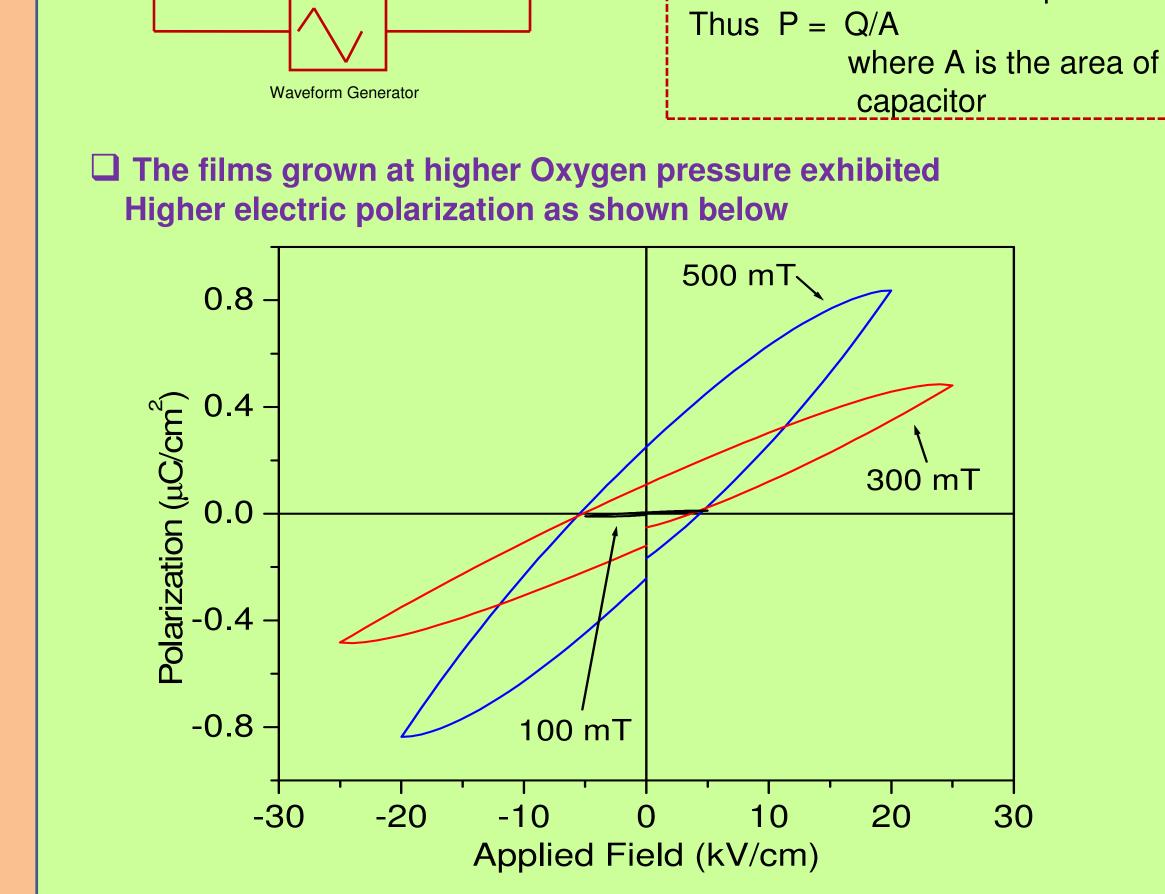


Fig. 10: Electric Polarization as a function of applied electric field for the films grown at various oxygen pressures. The polarization measurements were performed using Precision LC from Radiant Technologies

Table 2: Saturation and remanant polarization and coercivities

Background Pressure (mT)	Saturation Polarization P _S (μC/cm²)	Remnant Polarization P _R (μC/cm²)	Coercive Field E _c (kV/cm)
100	0.01	0.0045	2.05
300	0.48	0.1	4.4
500	0.83	0.24	4.9

Enhance O₂ Intensity for better Oxygen incorporation in the film

2. Experimental Details

Dual-Laser PLD with ICCD Imaging System

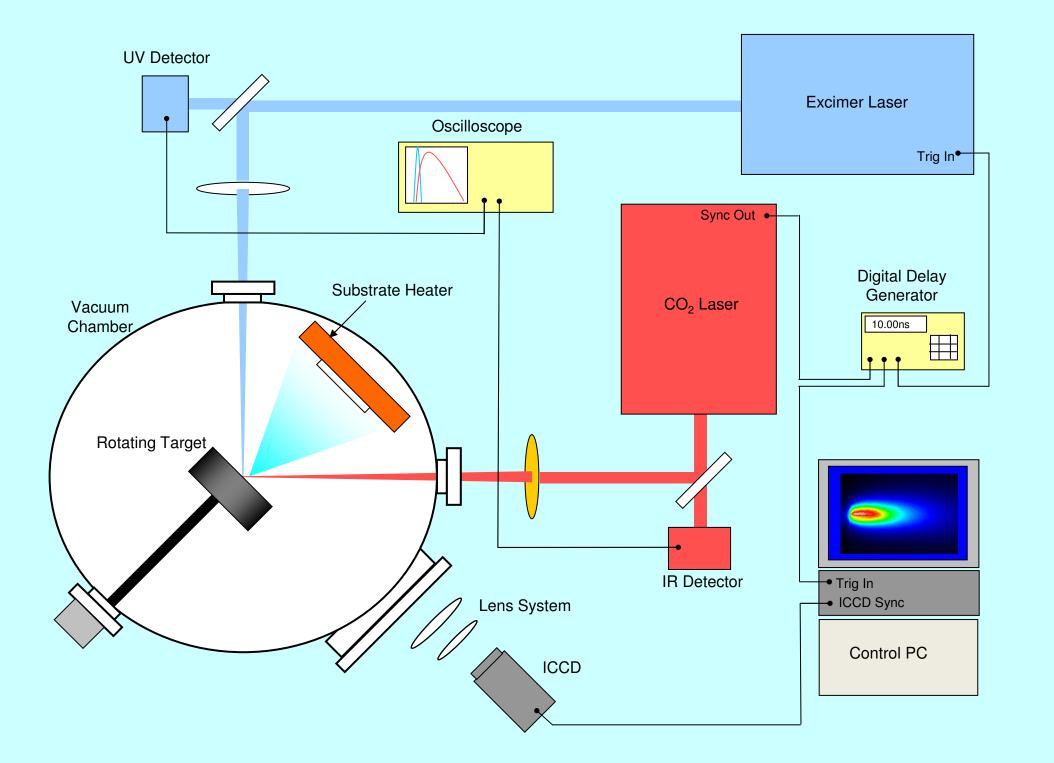


Fig.3 : The schematic diagram of the dual-laser deposition system (248 nm KrF excimer laser and 10.6 μ m CO₂ laser) with the ICCD imaging system (PI-MAX:512 UNIGEN)

Laser Target Interaction

Figure 6: XRD peaks of 2 at. % V-doped ZnO grown on c-cut sapphire substrate. The right panel shows the rocking curves of (002) ZnO peak showing FWHMs.

Future film growth using Dual Laser System

□ Plume profile becomes broader with dual laser □ Plasma Intensity increases which will better incorporate oxygen into the film

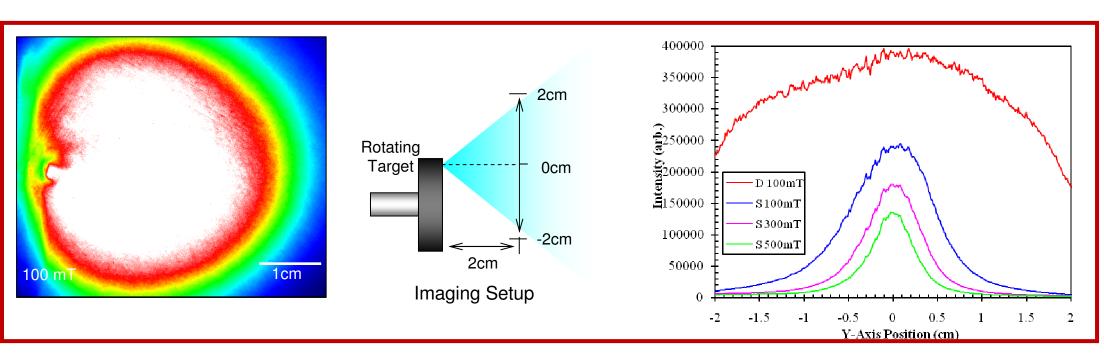
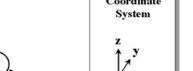



Figure 7: ICCD imaging (left), image set up (middle) and total emission intensity plot for single-laser 2 J/cm² (100 mT O₂, 300mT O₂ and 500 mT O₂) and dual laser $(2J/cm^2 UV and 2J CO_2)$ at 100 mT O₂. Intensity range is from 0 to 300000

4. Resistivity measurements

□ Van der Pauw method was used \Box The higher the O₂ pressure, more insulating were the films □Hall voltage measurement showed n-type

The carrier concentration (n) was obtained

0

6. Conclusion

Ferroelectric switching obtained in ZnO by doping it V⁵⁺ ion.

4 Higher saturation polarization for films grown at high O₂ pressure

The ICCD imaging of the plume expansion

- Broader for low O_2 pressure
- Narrower for high O₂ pressure
- Ablated plume with broader expansion and higher intensity yielded smoother films
- \downarrow Dual laser (UV+CO₂) will be used to grow films with reduced roughness

7. References

1. A. D. Corso et. al., Physical Review B, **50**, 10175 (1994)

Laser pulses of varying fluences were impinged on the fresh target surfaces to study the target surface morphology by using SEM and the stoichiometry by using Energy Dispersive Spectroscopy (EDS). The melted surface due to laser ablation showed smooth surface with Hexagonal facets characteristic of ZnO. The Vanadium content in the target for all the fluences remained nearly same

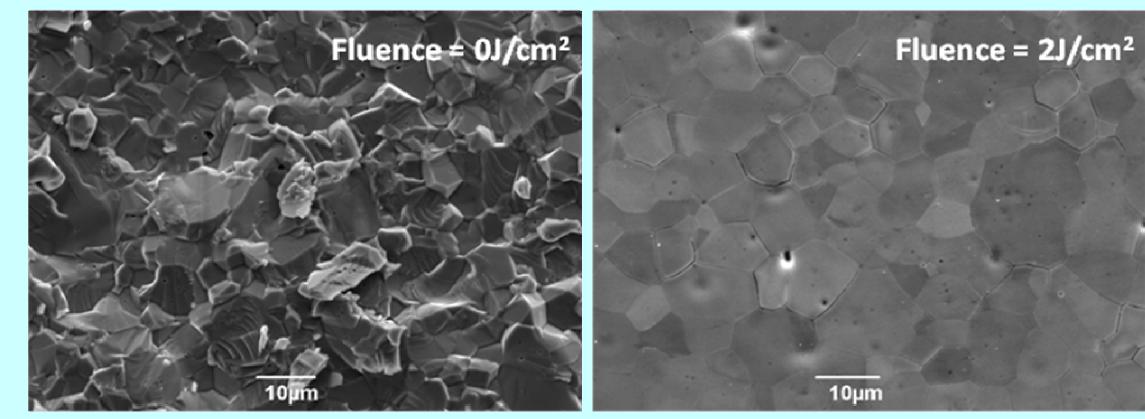
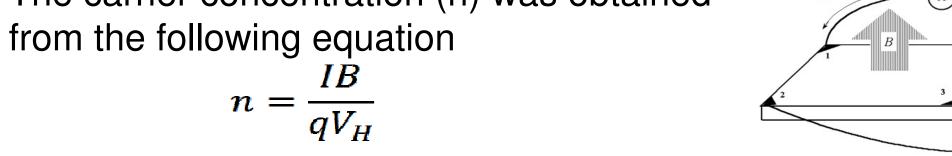



Fig.4 : SEM pictures of unablated (left) and 2J/cm² ablated (right) surface of ZnO ceramic target

where I is current, B is applied field, q is electronic charge and V_{H} is hall Voltage

Fig.8 : Schematic of a van der Pauw configuration [12]

Table 1: Resistivity and Hall measurement using Vander Paw Technique

Background Pressure				
(mT)	R _S (Ω)	ρ(Ωcm)	n _C (cm⁻³)	μ _H (cm²/Vs)
100	2.76 x 10 ²	8.82 x 10 ⁻³	2.66 x 10 ¹⁹	26.51
200	2.38 x 10 ⁵	7.61	3.08 x 10 ¹⁷	2.67
300	1.19 x 10 ⁷	4.53×10^2	3.76 x 10 ¹⁵	3.65
300	1.19 x 10'	4.53 x 10 ²	3.76×10^{13}	3.65

- 2. P. Sharma et. al., Nature Materials, **2**, 673 (2003)
- 3. R. D. Vispute et. al, Applied Physics Letter, **73**, 348 (1998)
- 4. Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, Applied Physics Letter **86**, 123117 (2005)
- 5. Mrinal Dutta and Durga Basak, Nanotechnology **20**, 475602 (2009)
- 6. 7. T. Shibata et. al, Sens. Actuators, A **102**, 106 (2002)
- http://en.wikipedia.org/w/index.php?title=Wurtzite_crystal_structur e&oldid=299659846
- 8. Y. C. Yang et al., Appl. Phys. Lett. **92**, 012907 (2008)
- 9. Y. C. Yang et al., Appl. Phys. Lett. **90**, 242903, (2007) 10. M. H. Zhao et. al, Nano Lett. 4, 587 (2004)
- 11. Pritish Mukherjee, John B. Cuff, and Sarath Witanachchi,
 - Applied Surface Science, **127-129**, 620 (1998)
- 12. The schematic obtained from NIST

